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I 1. Statement of the problem

I The accurate computation of rotor flows requires the proper treatment

of strong, concentrated vortex sheets that are produced by rotor blades and3 convect near the blades. For modern rotors, it also requires the proper

treatment of compressibility effects, including shocks, which can occur near3 the blades. In addition, it requires the proper treatment of blade dynamics.

Different methods have existed for some time for separately treating each of
these effects. No method, however, has been able to treat them in combination

and provide the total analysis that rotorcraft require. The availability of a
comprehensive aerodynamic code that can meet the above challenges would

b, of great benefit to the helicopter industry.(1'2) It would greatly reduce

many uncertainties in helicopter design and also reduce much of the3 dependence on expensive and time consuming wind tunnel testing. This would

allow more efficient designs to be developed. To be used, however, such a code

should be validated against experiment, so that engineers have confidence in
its results. It must also be reliable and robust enough to be usable b).

engineers in the design environment, without requiring empirical inputs for

each different case.

SThis report concerns the development of such an analysis tool, using a

new CFD methodology termed "Vortex Embedding" which has been developed3 and validated over the last several years, for the hovering rotor problem. The

new code, HELIX-II is the forward flight version of the hover code and the

original algorithm has been extended to study the forward flying helicopter

rotor. In this report three major issues concerning this problem have been
addressed:

1. Detailed unsteady compressible free- wake computations with strong
vortical effects but without actual impingement with the rotor blade.

S2. Incorporating the blade motion terms such as cyclic pitch variations
and flapping. This scheme is general and can be used to include aeroelastic

3 effects.
3. A separate CFD scheme has been developed to demonstrate vortex

3 impingement on the rotor blade.

I
I
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1 2. Background

3 Euler or Navier-Stokes equation solution methods using surface fitted,
fixed (Eulerian) grids have been shown to give accurate results for3 compressible flows, even in the presence of shocks. However, when
concentrated vortices are present, these fixed grid, (or Eulerian) methods
result in large amount of unphysical numerical diffusion, unless high order

schemes are used, together with a dense computational grid. In order to
* prevent this diffusion:

* First, a higher order discretization (fifth) together with a fine,
regular grid in the entire space where the vortex travels has been used to

solve the general problem of a vortex impinging on an airfoil.(3) This, of
course, requires a large amount of computing, although fairly efficient

implicit solvers can be used since the grid is regular.

3 * Second, a more efficient utilization of grid points can be made
with an adaptive scheme where grid points are clustered in regions of high3 vorticity, and a Navier-Stokes solver used.(4) Here, a relatively a large number
of grid points must still be allocated to the vortical regions to prevent
diffusion. Since, for many problems, the vortices can propagate over

relatively large distances before impinging on a surface these methods still
require large computing resources. Further, for general vortical flows,
unstructured grids are required to achieve significant clustering. This results
in complex logic and book-keeping. Also, without regular grids, conventional,3 efficient implicit solution methods cannot generally be used. The explicit
solution methods which then must be used are much less efficient and result3 in much longer computing times, for realistic 3-D problems.

These two strategies are the only ones, which have been used for
general compressible strong vortex interactions in aerodynamics - where the
internal structure of the vortex is involved and must be solved for - and which5 avoid significant numerical diffusion.

Potential Flow methods also use fixed, or Eulerian grids, are fully

compressible and can capture shocks.(5) Contact discontinuities, or vortex
sheets, however, are normally treated as potential discontinuities and do not

U



N diffuse. In normal treatment, they are fixed on grid planes and do not follow

the flow. Compressible Potential Flow solutions conserve mass throughout the

field as do Euler/Navier-Stokes methods. They also conserve momentum

everywhere that there are no vortex sheets (unless very strong shocks are

present). Because potential discontinuities are constrained to lie on grid

surfaces, however, conventional Potential Flow solutions do not conserve

3 momentum through vortex sheets and cannot be used where these vortices

convect close to other surfaces and cause large effects.

U Because of the diffusion or constraint problems associated with the

treatment of vortex sheets, the above methods, by themselves, are not suitable

I for treating rotor problems, where the locations and strengths of these sheets

must be accurately computed.

I Currently, the most successful CFD method for the treatment of rotor-

wake problems involves the use of vorticity embedding(VE). This method is

unique among CFD methods in that it preserves wake circulation without

requiring dense grids. This is because the circulation is not carried by the

3 grid, but rather by a sheet of convecting wake markers, whose circulation is

then impressed on the adjacent grid points as a local vortical velocity

3 distribution. This approach, used by the HELIX-I(6'7' 8 ) code has been

successfully applied for the prediction of hover wakes and performance.

I In Fig. 1 and Fig. 2 the computed load distribution and the performance

using vortex embedding are compared with experimental data.

U Forward flight is much more computationally intensive than hover for

several reasons. For hover any number of blades can be computed(at nc caZra

cost) simply by appropriate specification of boundary and wake periodicity.

This is not possible in forward flight. Furthermore, in hover the end result is

I a single steady flow solution (in rotating coordinates) with one wake

geometry. In forward flight, there is no steady flow solution or a single wake

Sgeometry. The wake system is different at each time step and the solution must

be constantly reconverged to accommodate this changing wake. This

3 necessitated several modifications to the original approach (HELIX-I) in order

to improve the code computational efficiency and the capability to include

3 unsteady wakes. These have been implemented in the code HELIX-Il.

U
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3 3. Vortex Embedding Method for
Advancing Rotor BladesI

Recently, several new schemes have been developed&9' 1 0 ) wherein an
inner CFD based method is coupled to either a comprehensive rotor code or a

free-wake method based on a lifting surface type Lagrangian method.

3 In our method, a Lagrangian wake convection scheme is incorporated
in a potential flow based method and thus no external coupling is required to3 include the wake effects. At low advance ratio forward flights the wake effects
are important as in the case of hover and need to be modeled properly. But
unlike hover the solution is no longer axially symme-ric and the wake is

different for each time step and the solution must be constantly reconverged
at each time step to accommodate this changing wake. With this in mind the

new algorithm was developed that is computationally efficient and as accurate
as the original algorithm.

I Some important features of HELIX-II are:

1 1. The unsteady full potential equation is solved by a semi-implicit
method based on approximate factorization.

I The solver h•as been modified to include multiple blades. Thus the code

computes entire 360 degrees.

At each time level Newton type sub-iterations are performed to achieve5 time accuracy and to obtain the correct wake geometry.

A local time linearization provides a good initial guess for the Newton
3 iteration.

An improved wake convection logic provides a smooth transition from
the potential jump representation to the Lagrangian wake.

3 2. The wake is represented by a set of markers distributed along the
spanwise and azimuthal directions. Using an initially specified markerI

I
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strength (from a hover calculation) and the undistorted wake geometry a

vortical velocity is computed using Clebsch's variables,

qV =V 1

Since a major portion of the computing time is spent on determining

this vortical velocity a new search and spreading algorithm which is faster

than the original approach has been developed using computational

coordinates instead of physical co-ordinates. This speed up is important for

computational efficiency because in forward flight it is required to update the

wake and the vortical velocity at every time step. The vortical velocity

accounts for the wake effects in the solution to the unsteady mass

conservation equation in the Eulerian grid.

3. Due to prescribed blade motion, flapping and structural deformations,

the blade attitude has to be modified at each time step. These effects are easily

included by modifyi.ng tthe grid in the vicinity of the blade. Simple blending

functions are used to keep the outer regions unchanged.

A schematic of the HELIX-II is shown in Figure 3. It can be seen from

this that each time step of free-wake calculation involves several modular

computations and by lagging them by one time step these computations can be

performed independently at the same time. The steps are :

1. The time step is initialized. An undistorted wake is obtained using

the advance ratio and rotational speed. This undistorted wake comprises of

nodes distributed in the azimuthal and radial directions. The radial nodes are

located at cell centers and are distributed at constant intervals in the

azimuthal direction and this interval is determined from the time step. A

vortical velocity is obtained at the grid nodes using this wake and a detailed

description of this procedure is given in the following section.

2. Blade motion terms like flapping and cyclic pitch are determined

either from a coupled dynamic code or externally specified inputs. They are

included as grid changes.

3. The unsteady mass conservation equation is solved for the potential

using a finite volume scheme, with vortical velocity representing the wake. A
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I time linearization and Newton sub-iterations are done while solving the full

potential equation. This procedure is described in section 3.3.

4. From the potential, its gradient and the total velocity are obtained
and used for wake deformation.

5. Time step is advanced. A new node is added to the wake,3 corresponding to the trailing edge location of the blade at the current time
step. Wake nodes are ddistorted to follow the local flow.

U 6. A new Z V is calculated. Return to step 2. This process is continued

for several blade revolutions until the blade is trimmed and loading converges.

That is, when the azimuthal loading repeats between the revolutions the
computation is stopped.

Each step is separately explained in the following sections. Since the
approach is modular each module can separately be upgraded or modified

with an enhancement without affecting other modules. The application of

HEUIX-II for a two bladed rotor blade is shown in Chapter 4.

1 3.1 Wake Convection

' IAs mentioned earlier, the wake is represented by a set of markers
distributed along the spanwise and azimuthal directions. This initial wake is
undistorted and computed using rotational and forward velocities. Each

marker node is assigned an initial circulation. This circulation, if obtained
from hover calculation is constant in the azimuthal direction and varies only
in the spanwise direction. It is updated every time step and this variation
accounts for the shed vorticity. This Lagrangian wake nodes are identified in
the Eulerian rotor fixed grid. This step involves a search procedure that first

identifies the cell.

I Once the cells are identified each Lagrangian wake node is assigned a

value in computational coordinate system.

XL,LV = IL,LV + ALLVI
I
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i where IL,LV refers to the Eulerian grid cell the marker node (L,LV) is located

and AL&V is the distance from each face of the cell. With XL.LV and "LLV

describing the Lagrangian wake, they are used to determine the vortical
velocity in the Eulerian grid. This procedure is described in the next section.

The wake convection procedure for a new time step involves the
i following steps:

1. The inertial coordinates of the blade fixed grid is obtained
corresponding to the new time step.

2. A set of new marker nodes is added. They correspond to the blade
trailing edge location at each spanwise station of the inertial grid.

3. All marker nodes are displaced to follow the local flow. That is, given
the inertial grid, using a search procedure the location of the Lagrangian

nodes are determined in the Eulerian grid. Then the grid velocities (3

components) are interpolated to the wake nodes using a trilinear
interpolation. The new wake coordinates are given by

XL,LV.t+At = XLLVt + VLLV • At ( 2 )

I where VýLLv is the interpolated velocity.

3 During this step, in addition to obtaining the inertial coordinates of the
wake, the cell identifying procedure provides the marker computational
coordinates. They are used for vortical velocity computation. These integrated
marker nodes define the new wake for the present time step. The wake
coordinates along with blade loading determine the convergence of the

solution. In this module, the search algorithm requires the maximum amount
of computing time. This process involves intensive vector and geometric
computations. The present algorithm is very fast and general. Also,
exhaustive search is performed only once in the beginning and subsequent

Ssearches use information from the earlier computation.

In HEUX - I, the time step for Lagrangian integration was chosen based

on the local grid spacing in the azimuthal direction. This flexibility provided a
greater accuracy in the wake geometry in regions near the blade where the

I
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grid is dense. In HELIX - 1I, a uniform azimuthal node distribution is needed
for time accurate computations and the original approach is no longer

practical. When a large time step ( like 4 degrees ) is chosenthis may result in
poor resolution in regions near the blade where the grid is dense and a

4 degree interval may skip the entire blade. Without enough nodes, the
resulting 4v computation will be inaccurate as the nodes may 'jump' several

computational cells in 1 time step. In order to prevent this, a sub
interpolation scheme is used which sub divides the computed wake between
nodes. The wake with these added sub nodes mimics the local time stepping
approach of HELIX - I and is used only for vortical velocity computation. The

* subdivision can be described as follows:

Let XCL, LV be the computed computational coordinate of the wake node3 ( L, LV ). 'L" is the azimuthal index and LV is the radial index.

* Define,

N = XCL+I,LV XCLLV

I If Nj is greater than 1 , NJ number of 'sub' nodes would be added between

nodes L and L + 1. These subnodes will have the grid indices as their XI coordinates and the other two coordinates are obtained using weighted
interpolation. That is:

I -��X(L,LV) = X•(L+I,LV) * F1 /F 3 + XC(L,LV) * F2 /F 3

where F1 , F2 and F3 are weighting functions. F ( L, LV ) the wake node

circulation is also interpolated in a similar manner to the sub nodes. This new
wake with atleast 1 sub node in each cell is used for •V calculations.

I
3.2 QV Calculation

I Once the wake is obtained for any given time step, the calculation of qv
is performed. That is, the circulation of convecting Lagrangian wake nodes

are impressed on the adjacent grid points as a local vortical velocity
distribution. This step involved a search procedure in the original algorithm

that was computationally intensive. In that approach the physical

I
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I Lagrangian inertial coordinates were used and an exhaustive search over the

entire grid would determine the wake nodes that contributed to the vortical
velocity at each grid point. Since for hover, the wake is axially symmetric the

final solution involves a single wake geometry, this procedure is still
acceptable and simple to implement. The steps involved are:

1. Compute Lagrangian wake X'w (L,LV)

2. For each (ij,k) of Eulerian grid XE ( i, j, k) compute the distance As

from an X ( wake) panel.

If (As >a) set,

q = 0.

I where 'a' is a specified smearing distance

3. If As < a, compute,

q = fijkV..k

where F is interpolated circulation and

I X = I sin 2-_.,2 a

Sn is the normal distance of panel from a given node. The details of this
procedure can be found in Ref. 6.

I In forward flight, the wake is time dependent and there is no single
wake geometry. One trim calculation may involve several azimuthal
revolutions and each revolution require as many wake computations as the
number of time steps. So the procedure outlined earlier will be prohibitively
expensive and impractical. So a revised scheme has been developed which is
memory intensive (requires lot more storage) but much faster. In this:

I 1. The wake convection and the subsequent smearing to compute
Clebsch's constants are done simultaneously. That is, in order to convect the
wake the grid velocities will have to be interpolated to the marker location.

During this process the Lagrangian nodes location are obtained in the index
(computational) space. They are saved as XC (L, LV).

I
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1 2. Now obtain,

IC(L, LV) = INT(XC(L, LV))

3. From each IC(L, LV) node define a smearing region in computational

I space given by

R = IC - D .--. (2)
where 'D' is the number of cells over which the -v* will be spread in

the computational space.

4. Obtain Clebsch's variables rijk and Xijk at these cell nodes in

computational space using Eqn 1. Since F and X are scalars they are invariant

and can be transported to the rotor fixed grid to determine q-,v

I 5. A grid node can get contribution from more than one Lagrangian

wake node. Hence these contributions are added and a F and X are obtained

using interpolation like formulae :

rijk z r Wijk1Wij k

I Fijk - SWj(3

-- ISn Wijk

I Wijk3

uijk = l sin ijk
i2 D2. 2

where Wijk is a weighting function given by,

I Wijk= SA2 ijk

I ASijk is the distance of a wake node from the grid point.

SN is the signed normal distance of a grid node from a wake panel.

IF is the strength of the wake node under consideration. It has to be observed

that these functions have the same definitionas the original approach except

I
I
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U that they are defined in computational space and not physical space. Finally,

i ' is computed using

-- Vq = rijkVxI4k ---- (4)

I Here, the gradient is computed using the same box scheme as used for the

potential calculation.

3.3 Solution to Full Potential Equation with i v

I Once ;Tv is obtained for a given time step, the time dependent mass
conservation equation is solved with ;Tv and grid motion terms. That is,

solve for,

Sap -"

S+ V. (p') = 0 --- (5)
at

* where,

V = V÷+ v +VBM (6)

where VBM,, represents the velocity terms from the blade motion. Salient

features are :

* Equation ( 5 ) is discretized using a finite volume scheme.

* • At each time step local time linearization provides good initial guess
* for the Newton sub iterations.

* Circulation convection is solved in regions in the wake before being
replaced by vortical velocity.

I
I
I
I
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3.3.1 Time Linearization

In this section the time linearization procedure for Newton iterations

and for achieving time accuracy is outlined. A detailed description of this

procedure can be found in Ref. 11.

If n is the running index in the time direction Eqn.( 5 ) can b e

* represented as

= 0 --- (7)

where * is the unknown to be solved for at every grid point in the (n+ 1) time

3 level. The Newton iteration for solution to Eqn. ( 6 )is

3 F(p.) + (-.*) =0

3 where p* is the currently available value of * at the (n+1) level. At

convergence,

IAO = - d* will approach zero.

5 Equation ( 5 ) can be discretized as:

pn+1 - pn o n +3 + -(phU) + -2(phv) + (phw) = 0 ---- (7)

3 using the expansion for pn + 1 etc.,

p(ý*) - pn I * A+ + f + a + g + Aý*

3A 0p~A 0I + p + LP ý*I 0

3 where,

f = pUb
3 g = pVh

p = pWh

I
I



I
16

I are the flux terms wit1-

h 1 the Jacobian of transformation.

* Using:

a p- [ U + V a_+ W a

and similar expansion for af-, g, and Lp and rearranging and

retaining terms containing AO on the LHS we get,

I~~I{ '+ A-E U• + V, a_ + w" -I

AT --1 - + +- (P- A -A

{ ;z-- ( ^ ( A + p ----(8)

I where,

p = ph

I A ITI At = ( a.. -)

*A-2 B -BAL)

A, B and C are terms in the expansion of Laplace's equation. The LHS

can be factored using an approximate factorization scheme and becomes

IA3• L • LA+ : RI-S

I
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RHS involve terms containing fluxes at '*' level and density at nth level

all known. We solve for A¢ . At convergence A * == 0 and * n
In our scheme the spanwise marching is done explicitly. That is, L- = 1.

Also, to get an initial guess for expansion about nth level is used instead

of * level.

3 Finally, in the wake circulation convection equation is solved using

iF + U F• = 0

1 3.4 Dynamic Blade Motion

U
In this section the mechanism to include blade cyclic pitch variation,

flapping and elastic deformations is described.

3 The fundamental task of the comprehensive analysis is the computation

of the trim solution. The trim procedure produces control inputs ( cyclic and

collective ) for known thrust through an iterative aerodynamic/ dynamic/

elastic computation. This input can either be obtained from another

comprehensive load ( CAMRAD ) or from flight test data. A pioneering effort

in the coupling of CFD methods to a comprehensive code is shown in

Reference 12. In this technique a small disturbance for a full potential code

was coupled to CAMRAD as part of the trim procedure. The coupling was

achieved by providing a partial angle of attack from CAMRAD to the CFD code3 and, in turn, returning the blade load to CAMRAD. The partial angles

represent geometric twist, blade motion ( flapping and deformation ) and

* wake inflow effects and were imposed through a transpiration condition at the

blade surface.

3 For efficiency, the CFD computation was performed outside the trim

loop. The CFD solution for the lift was specified as a base solution used inside3 the trim loop. Table lookups were used to provide a correction to the lift and

angle of attack. Convergence was achieved when the angle of attack obtained3 yielded no correction to the base solution.

U



In the present method, the aerodynamics is treated more accurately,

including the time dependent wake, and treats the entire flow field in a

unified way without requiring separate wake models and computational boxes

around each blade. The CFD calculation, which models the basic three
dimensional and unsteady inviscid flow, including the wake, requires a

knowledge of the blade deformation and motion to properly predict the loads.

In HELIX-II the cyclic pitch and flapping are included as changes to the
blade fixed grids. These changes are confined to a region close to the blade
using suitable blending functions. The procedure is described as follows.

Blade pitch variation is given by

B = 6o + OcCosV + OIsSinV + higher harmonics (9

3 Here, %0, is the collective pitch required for a given trim condition

1Cc, is the Cosine component of the cyclic pitch variation.
m 0S ,is the Sine component, V is the azimuth varying in time.

60, 0 1C, and 0Is are obtained either from flight tests or from a comprehensive

3 code.

Each blade sectional grid is rotated by OB using,

Tnew = 1old Cos OB + 'old Sin OB3 Ynew = - Xold Sin OB + 7old Cos OB

Then the 'old' and 'new' grids are blended using:

Xnew = Xnew fij + Xold (1 - fi j)

3Ye = Y•w fij + Yold (1-fij)

where fi j is blending a function that is 1 near the blade and goes smoothly to

3 zero near the boundaries. This blending process keeps the changes local and

leaves the grid near the boundary unchanged. The blade flapping motion is

3 given by

P(V = ) o + PIcCosVp + P1sSinVp + higher harmonics

where 10 is the coning angle , P3 IC and PIS are cosines and sine components

3 of the flapping motion corresponding to the first harmonic.

I
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From P(V), for each time step a flapping deflection is computed using

I AY I flapping - r. sin[PV

Il w- .-re r is the section radius at which the flapping deflection is computed

and it is maximum near the tip. This flapping motion is incorporated using

Yijk (new) = Yijk (old) + AY I flapping

Yijk (new) = Yijk fij + (- fi j) Yijlý old)

I Finally, a grid velocities are computed using:

5Vgrid + e At -

At

where Xt + At is the grid coordinates at time t + At and X is the grid at time

t. These velocities are added to the physical velocity while solving for the

3 potential.

The blending scheme is shewn in Fig. 4. The torsional and bending3 deformation due to aeroelastic effects can be accounted for using the same

technique. Here, instead of specifying the angles, they are obtained from a3 coupled structural analysis code. This code takes aerodynamic loads as input

and returns the blade deformation as output.

I
I
I
I

I
I
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4. Demonstration of
Blade, Vortex Direct Impingement

In a separate effort, HELIX - II code was coupled to a BVI method and is
described in Ref. 13. Here, also a vortical velocity computed as a velocity

correction and added in the solution to mass conservation equation every time

step.

4.1 Vortical velocity computation:

Every time step, an accurate, diffusion-free vorticity, denoted wo, is
13computed on the Eulerian grid near the blades, using the L field method

This involves convecting the L field coordinates on the Eulerian grid and

transferring vorticity coefficient values with a simple low order interpolation

scheme. The next operation in each time step involves computing velocities
that correspond to this vorticity. For doing this involves a vector potential,

A, in three dimensions ( or stream function in two ) such that

"t' 2 _.. -ft

V A =-t

Then the vortical velocity is given by

q VxA

Instead of computing the above three full Poisson solutions, we use a

corrected, primitive variable Navier-Stokes approach. This is equivalent to

computing one, or a small number of explicit Poisson iterations each time step.

In this approach, the velocity components are convected directly on the E
Grid ( using, in our case, the image method ). Since the velocity from the

previous time step corresponded to the exact vorticity ai •lhu.i same time step,

the convected velocities will closely correspond to the ne , \Jta, vorticity at

the new time step. The main difference is that the exact ;'. denoted o,

does not exhibit numerical diffusion, since it was computed using the L Field

method, whereas the vorticity computed from the convected velocities does.

This is due to the diffusion inherent in the direct convection method, whether
a standard numerical method or the image technique is used.
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The two distributions, w corresponding to the convected q-, and the

exact value, wo, are expected to differ only in the high frequency components.

Accordingly, starting from w , we would expect a simple Point-Jacobi-like

, orrection step, rather than the full set of Poisson solutions, described above,

to be sufficient to correct the velocities so that they correspond to "o. The

correction has the simple form:

I _ eVx

I It can be seen that this is equivalent to a simple Point-Jacobi iteration step in a

Poisson Solution. Taking the curl of both sides and using the triple-product

3 form, we have:

-2

Assuming w - to vanishes outside a small region, and Wo and wo coincided at

the last time step, then a single application of this formula should correct for
numerical convection-induced diffusion. In practice, several applications3 may be required at each time step. The computing time is small, however,

since vorticity is non-zero only in a small region.

I This correction would not be effective for solving for q if we did not

have a convected velocity to start from. Then, it would be equivalent to

completely solving Poisson's equation with a Point-Jacobi method, which
would require many iterations since it is very inefficient for long wave3 length errors. Numerical convection of velocities together with a single or

small number of correction steps, however, can be seen to be very effective.3 In Fig. 5 we display initial vorticity contours of .4 and .8 maximum value

computed from a velocity field that is being smoothed to simulate numerical

convection-induced diffusion. In Fig. 6a vorticity is plotted along a horizontal

line through the center after 0, 50, and 100 diffusion cycles, with no

corrections. In Fig. 6b the same values are plotted, but with a single

application of the correction method each step, with oo set at the initial W_. It

can be seen that diffusion is effectively eliminated.I
I
I
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3 4.2 Coarse Grid Region

SAway from the blades, where the grid is coarse, this velocity correction

takes a particularly simple form : Rather than computing velocity corrections

so that (o matches an imposed 0 we simply drive w to zero outside a region

defined by the L Field coordinates. This process can be described as vortex

capturing. This capturing technique is simpler to use in coarse grid regions

than the wo matching version since it does not involve defining an we

distribution on the L Field and computing the stretching factor. Further, even

a defined '" distribution would have to be scaled if it were to be imposed, or a

fine grid required everywhere, since the grid that we should use for

3 computational efficiency can be too coarse in certain regions to resolve the

initial distribution. The capturing scheme operates in a similar way to shock

capturing schemes, where the discontinuity is automatically spread over

several grid cells regardless of grid size with a distribution that is not specified

3 but results from the numeric.

This form of the method is almost completely Eulerian: It only requires

3 a single Lagrangian variable, s, which measures the distance to the vortex

centroid. Many types of Lagrangian distance function appear to work: A

distance function useful for confining the vortex sheets, in our case, is

s = (cjo) 2

To accommodate strong concentrated line-type vortices produced by blade-tips,

3 for values of cko near cktip, this can be modified to

s = (cjo) 2 + (cko - cktip) 2

I where cktip is the value of cko at the blade tip. Other variables can be used:

We have had success with the magnitude of the shed vorticity, which is

maximum at the centroid. This is computed shortly after the sheet has been

shed and then numerically convected as a passive scalar. Like the other

3 functions, this serves to provide a vector ( the normalized gradient ) in the

direction of the centroid of vorticity. Results are presented in Fig. 7 for our

3 HELIX-1I code using this latter function, for a general convecting 3 - D wake

shed by a single rotor blade. Below, first, the basic formulation of the vortex

3 capturing technique will be given. Then, results of model studies similar to

3
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I those presented above for the Near-Blade ( vortex matching ) method will be

described. It should be emphasized that this vortex capturing technique is

very general - it can also be used near the blades, even for cases with

impingement, as long as it is not desired to solve for the detailed, evolving

vortex internal structure.

We use a formulation that has a bias towards smaller values of s. The

correction then transports vorticity towards regions of small s, while

conserving total vorticity. This has proven to be a robust scheme. It allows

3 concentrated vortices to be accurately and simply convected through regions

with both fine and coarse grid cells, without numerical diffusion. If we

consider a grid cell with velocity defined at the nodes, then the box-type

central differencing that we use to compute the curl results in an a) defined at

the cell center ( see Fig. 8 )'. We then compute convected values of s at the

nodes, and compute ( at the cell center ) a unit vector pointing to the centroid

of the sheet:

I nF

3 The correction to be added to the velocity is then simply

S a I In'xwo

where is a constant relaxation factor and are weights computed at cell nodes

( labeled I) to enforce the biasing. We have had good success with the simple

form:

a3= min(O, sI - (s)

I-

This approach was used for computing blade /vortex impingement and

3 detailed results are shown in Ref. 14- 15.

I
I
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1 5. HELIX - II Applications and Results

Before using HELIX -II for forward flight calculations, each module was
separated, tested for accuracy. The modules tested are, the unsteady full
potential equation solver, the wake convection procedure and finally the code

was applied to perform complete forward flight computation at low advance

3 ratios.

The unsteady full potential solver was applied to compute the time
Shistory of loading on an oscillating airfoil for a wide range of Mach numbers.

In Fig. 9a the computed lift distribution is plotted against time and compared
with experiment . The airfoil ocillates -t 2.5 degrees about a mean of 0 deg.

The Mach number is 0.755. Good comparison of the lift history is seen. In
Fig. 9b the computed pressure is plotted during a downswing of 20 when the

shock is strongest and compared with data and good comparison is seen. Next,

the HELIX -Il wake convection module was applied for a hover computation on

a AH - 1G. The computed load distribution hover solution and wake geometry
are shown in Fig. 10.

Forward flight calculation:

3 With this background, complete forward flight solutions have been

performed on a two-bladed rotor at advance ratios of 0.15 and 0.19. A new H-3 mesh grid generating code is developed for this purpose. The grid is generated
using a two step mapping procedure. First the airfoil coordinates are input at3 each spanwise station where a radial plane will be defined. In addition to
these coordinates, the normalized radial plane location ( normalized by root

chord ) and the corresponding twist distribution are input. First a planar H -

mesh is generated at each radial station with specified boundaries. The axial
boundaries are chosen to be approximately at 1 radius. Next, the planar grids
are transformed to a series of cylindrical grids with constant radii. The stream
wise extent is determined from the number of blades.

0min - 0 max 2a
Nblades

I The transformation from the planar to cylindrical grid is performed using:

I
I
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Cp for Pitching Airfoil M= 0.755 (2.5 deg pitch)
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Figure 9: Comparison of surface pressure and unsteady airloads for an os-illating
airfoil at transonic speed - computed using HELIX IIiU
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Once the grid is obtained on a single blade it is rotated by appropriate angle to

obtain grids on other blades.

The rotor blade chosen for HELIX - II studies has been AH1G rotor with
an Aspect ratio of 9.8. It uses a 11% thick symmetric airfoil along the span.

Three different grids have been generated containing about 350,000 to 400,000

points. Of this about 200 points are distributed along the azimuth, about 50 in

the normal direction and about 40 in the radial direction. A cylindrical section

is shown in Fig. 11. The twist and a collective pitch angle are built into the

grid by rotating each radial station. Finally, the blade motion harmonics are

input from the flight test values. These are the blade coning angle, the first

Slongitudinal and later cyclic pitch coefficients and blade flapping harmonics.

These coefficients correspond to a particular trim condition. Two different

conditions have been chosen at advance ratios of 0.19 and 0.15. The lateral

and longitudinal cyclic pitch variations have been obtained from Ref. 16.

Also, the blade flapping harmonics - zeroth ( coning ) and first are input from

this report. The tip Mach number is 0.60.

The potential has been initialized to zero. The initial wake is undistorted

one obtained with rotational speed and a uniform axial flow. The initial blade

position corresponds to 0 degree azimuth. The undistorted wake has 21 nodes

distributed along the spanwise direction and 100 azimuthal nodes ( Fig. 12 ).

The radial circulation distribution is input from an earlier hover calculation

and there is no azimuthal variation of circulation initially. Thus this starting
wake is very approximate and hence a better way of starting the solution

* would involve specifying a more accurate circulation variation from either a

lifting a line code or from a previous calculation. In the absence of such

information the present starting procedure can be used. This results in a

longer computing time - requiring about 6 - 8 revolutions before a periodic

solution is obtained. At each time step, the wake is distorted to follow the local

flow at that instant and a new node is added to the wake. In the present

calculation, for every node added a far wake node is dropped thus maintaining

the total number of azimuthal nodes a constant. The effect of the far wake is

included using extrapolation.

I
I
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I In Fig 13 the computed wake geometry is plotted at two different
azimuths corresponding to 90 and 180 degrees. This wake :s obtained after

6 rotor revolutions of computations. The wake rolls up and convects fairly
close to the blade. At 90 degree and 270 degree azimuths their proximity to the

Sblade cause particularly a strong interaction.

Computations have been performed at two advance ratios 0.15 and 0.19.

In Fig. 14 contours constant circulation is plotted for 7 rotor revolutions. The
loading corresponding to revolutions 5, 6 and 7 are nearly identical3 signalling the arrival of periodic state. This figure also highlights regions of
strong BVI occuring on the retreating side. There is a sudden variation in3 airloads which begins near the tip and extends over the entire span. In Fig. 15

the computed sectional loads are plotted as a function of azimuth for differnt

radial stations. There is a strong BVI induced loading at 90 degree on the

advancing side and at 270 degree on the retreating side. In Fig. 16 and 17 the

computed load distribution are compared with CAMRAD/JA computations and

flight test data( 1 6' 1 7 ). A detailed analysis of these comparisons loading are
made in Ref. 18 and 19. The magnitude of interactions are less severe when5 compared with the experimental data. This may have been caused by the lack
of resolution and hence an excessive smearing of the vortex. In order to

Sprevent this, with this existing wake the solution can be recomputed over a

short interval using a finer grid. This interval would cover the region of BVI3 both on advancing and retreating sides. Also, a smaller time step would
enhance the time accuracy. With a finer grid, the core of the vortex and the

spreading of the wake will be reduced. With a better definition of the wake

region interactions become stronger. The use of a very fine grid for the
entire grid will be computationally expensive also may cause wake stability
problems. But in the present approach, fine grid is used only as a post

processing of the solution over a short interval and since no wake updates are3 performed on this grid the solution is stable. In order to study the effect of the

time step core size and marker resolution computation have been performed3 using 1 degree time step. The wake for this calculation's interpolated from a 4

degree wake. Also a smaller spreading distance has been used. These
computed results are compared with data in Fig. 18. There is a marked

improvement in the correlation of peak to peak loading variation due to BVI
on the advancing side.

I
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I Conclusions

3 A new free - wake analysis CFD method has been developed that is

applicable both for low and high advance ratio forward flights. At low

advance ratios the wake effects are nearly an important as in hover. But at

the same time the solution is time dependent unlike hover and hence

represent the most difficult region to accurately predict. Several important

effects such as a complex wake system, transonic flows near the tip, the

specified blade motion and blade deformations due to aerodynamic loads should

I be taken into account.

HELIX - II handles this complex problem in a unified manner. The wake

effects are fully included by the unique vortex embedding procedure.

Specified Blade motion terms for a trim calculation are incorporated with

I simple grid modifications confined to regions near the blade. The method is

fully compressible and can capture non - linear transonic shocks accurately.

3 For elastic deformations a coupling procedure with a structural code will be

required. When coupled, the aerodynamic loads will be input to the structural

3 module which will in turn provide blade deformations to HELIX - II. The

torsional deflections and angles can be incorporated as a grid modification.

3 At present HELIX - II runs on a super computer at takes about 8 CPU

hours on a YMP for 1 trim calculation. With a better starting solution this can

3 be greatly reduced. In addition, the current version performs detailed

computation on all blades. Hence requires a large number of grid points3 especially in the azimuthal direction. This may not be necessary. Detailed

computation is required only on one blade and other blades can be represented

by a lifting line whose circulation can be obtained from the first blade's

circulation at an earlier time. Future efforts will be concentrated in cutting

this requirement so that more complex multiple blade configuration can be

3 easily handled. Also, the vortex confinement procedure described earlier can

be used for direct interactions.I
I
I
I
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I
COMPUTATIONAL VORTICITY CONFINEMENT:3 A NON-DIFFUSIVE EULERIAN METHOD

FOR VORTEX-DOMINATED FLOWStt

I John Steinhofft* Clin Wang,* David Underhill,t Thomas Mersch,t and Yonghu Wenrent*

ABSTRACT

I A new "Vorticity Confinement" method is described which involves adding
a term to the momentum conservation equations of fluid dynamics. This
term depends only on local variables and is zero outside vortical regions.
The partial differential equations with this extra term admit solutions which
consist of Lagrangian-like thin vo-tical structures (such as vortex "blobs"
in 2-D and vortex filaments in 3-D) which convect with a fixed internal
structure, without spreading, even if the equations contain diffusive terms.
Solutions of the discretized equations on a fixed Eulerian grid show the same
behavior, in spite of numerical diffusion.

This modification appears to be very useful in the numerical solution of
flow problems involving thin vortical regions. The discretized Euler equations
with the extra term can be solved on fairly coarse, Eulerian computational
grids with simple low order (first or second) accurate numerical methods,
but can still resolve and accurately convect concentrated vortices without
spreading due to numerical diffusion. Since only a fixed grid is used with
local variables, the Vorticity Confinement method is quite general and can
automatically accommodate changes in vortex topology, such as merging.

In this paper, applications are presented for incompressible flow in 2-
D, including co-rotating vortices and Vortex Sheet Rollup. The method,
however, is not restricted to 2-D (results of an application to 3-D helicopter3 rotor flow in generalized coordinates have been previously presented).
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1. INTRODUCTION.

In high Reynolds number flow, thin regions of concentrated vorticity often exist, which
convect through the flow field. These vortical regions can be much smaller in extent than
the other length scales in the flow. In these cases the details of the internal structure of
these regions may not be of interest, but only the total vortical strength and motion of
some suitably defined centroid of each. Computational methods which neglect the accurate
computation of the internal structure of these regions can be thought of as a "zeroth order"

step in a computational sequence, where the next step would involve, for example, including
the effects of viscosity and/or turbulence on this structure.

There are, basically, two ways of treating such "inviscid" flows in conventional com-
puting methods - Eulerian and Lagrangian:

Eulerian methods involve using a fixed computational grid and discretizing and solving
the basic partial differential equations which describe mass and momentum conservation
in the absence of viscosity (and also include energy conservation for compressible flow).
These methods do not require specification of the shapes of the vortical regions: They
treat vorticity as being present everywhere and solve the same equations at each point.
In computations with these methods, attempts are made to attain a reasonable internal
structure for thin vortical regions with a minimum number of grid cells across them.
A serious disadvantage concerns numerical diffusion which arises in these computations:
After a number of time steps the vortical regions tend to diffuse to much larger sizes than
would result from only physical diffusion, unless a relatively large number of grid cells are
allocated to the region of concentrated vorticity [1].3 A very different approach to solving the same inviscid fluid dynamics problem involves
the use of Lagrangian markers that convect with the flow (using some suitably defined
mean velocity at each marker location). These methods, in the form of "Vortex Lattice" or
"Vortex Blob" techniques for incompressible flow [2] and "Vortex Embedding" methods for
compressible flow [3] entail representation of vortex sheets or vortex filaments by surfaces
or lines defined by markers. These objects represent the centroids of the vortical regions
and the main quantities of interest are the total vorticity around each point of a centroid
and its location. Usually, a "spreading" function is specified that, effectively, defines the
internal structure of vortical regions treated with this technique. Since this structure
is specified, it can be kept constant or varied slowly (to simulate the effects of physical
diffusion), thereby avoiding the numerical diffusion problem of Eulerian methods.

Unfortunately, there are disadvantages to these Lagrangian methods that limit their
usefulness for many realistic problems: Since the vortical regions are defined by connectedI sets of markers, the topology of each region should be known beforehand so that a suitable
array of markers can be computationally defined. In general flows, multiple sheets can
be shed from different places on smooth surfaces and some may reattach, making marker

specification very difficult. Further, even in problems with simple vortical regions, if these
regions interact with solid surfaces, their topology may change, requiring new specifications
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of the marker inter-connections. Examples include vortices being "cut" by thin objects,

such as wings, and reconnecting. In addition, vortical regions cannot easily be made to

merge in a natural way if they are defined by markers. This makes it difficult to compute,

for example, merging of vortex rings or trailing vortices generated by aircraft. (Lagrangian
methods which use large numbers of unconnected markers with overlapping structures also

appear to require some information on the locations of vortical regions for the allocation

of markers [4].)

I In this paper we present a new method for computing flows with thin concentrated

vortical regions. The method uses only a fixed, Eulerian finite difference computational

grid and does not involve Lagrangian markers. Hence, like conventional fully Eulerian

methods, it does not have the disadvantages of Lagrangian methods. It can treat general

concentrated vortical distributions in the form of lines and sheets which are shed from sur-
faces. These vortical regions can interact with other surfaces and each other and change

topology, and no special logic is required. For example, vortex regions can merge, auto-

matically. On the other hand, these thin vortical regions convect with a fixed internal

II structure, defined over as few as 2-4 grid cells, without spreading, even when the basic
finite difference method has significant numerical diffusion.

The method involves adding a term to the momentum part of the basic continuum

Euler equations. Even when a diffusion term is also added to these equations, or the basic
finite difference solution method has diffusive errors, these modified equations admit solu-

tions which consist of concentrated vortical regions which attain a fixed internal structure
and convect without spreading. The extra "Vorticity Confinement" term that is added is

local, and simple to discretize. Also, it is only non-zero within the vortical regions, and
does not change the total vortici'ty or mass within those regions. Further, for a large class

of vorticity distributions, including those most likely occurring in problems of interest, it

does not change the total momentum.

First, the basic method will be described. Then, simple closed-form solutions will be

presented for the modified continuum equations. A numerical method for implementing
the method in a discretized system will then be given. Finally, examplts of the method
will be presented for the convection and interaction of concentrated vortical "blobs", and

Vortex Sheet Rollup in 2-D. In the conclusion, limitations and possible extensions of the

method will be discussed.I
2. VORTICITY CONFINEMENT METHOD.

I 2.1. Basic Formulation. Some of the details of the basic method are presented in
Refs. (51, [6], and (7]. Diffusion is an integral part of the basic method, and we include it in

I the continuum equations. (It represents the diffusive part of the numerical error when the
equations are discretized.) Thus, we really have a set of modified Navier-Stokes equations.

Although the method should be applicable to general compressible flows, we only consider
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incompressible flow here. We have, in 3-D,

|V.q=o (1)

0 = -(q V)q + V(p/p) + •,V 2q + -k

where q is the velocity, p pressure, p density, and M the diffusion coefficient. For the
additional term, e is a numerical coefficient which controls the size of the convecting
vortical regions. The "Confinement Term" has the form:

k =-i x W,
V7 (2)

I where

is the vorticity and 77 is a scalar field that has a local minimum on the centroid of the
vortical region. Different versions of the method depend on the definition of 77. In the
simplest, described here, we have

S= -ji&) (3)

(Discretized numericil methods that we have developed to implement this correction are
described in Refs. [5], [6], and [7].)

In the confinement term, Fi is a unit vector pointing away from the centroid of the
vortical region and the term serves to convect w back towards the centroid as it diffuses
away. This convection increases the diffusion term and a steady-state form results when
the two become balanced.

Additional possibilities for the method involve specifying an auxiliary field (17*) inde-
pendently of w, convecting it with the flow, and computing r as a function of r7*. Some
discussion of these other versions are provided in Refs. [5], [6], and [7].

The new method has some of the features of the characteristic-based "artificial corn-
pression" method of Harten [8]. However, it is much simpler and, unlike that method, the
correction is limited to the vortical region.

2.2. Salient Features of Vorticitv Confinement Method. It will be seen that steady-
state solutions exist (in the frame of the convecting vortex), even with diffusion present,
for any (positive) value of c. Our basic point is that it may make more sense to discretized
this set of equations (1-3) which have thin, well-behaved vorticity distributions, even in the
presence of numerical diffusion, than to discretized the unmodified, inviscid Euler equa-
tions which only admit vortical regions that continue to spread, if there is any numerical3 diffusion.

An important feature of the vorticity confinement method is that the correction is lim-
ited to the vortical regions. Unlike artificial viscosity-like terms which are small everywhere
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I except near discontinuities, this correction vanishes outside vortical regions. Another im-
portant feature concerns the total change induced by the correction in mass (bIp) and3vorticity ( 6I1), integrated over the vortical regions: In general 3-D flow, because of the

vanishing of k outside the vortical regions, we have:

I SI,= J V. kdv =0

1 6,= J V x kdv =0

3where the integration is done over the vortical regions. Another important quantity that

can be conserved with the method is momentum. Here we have a more limited proof. If
we have a thin vortical "line" that is slowly varying along its length, then we can take a

2-D section and write for the change in momentum there:

S=Ik = j kda

3 where the integral is over the 2-D section. In this case:

k=WVW X

where Lo is the value of w in the direction of the vortex line (T) and VW and k are in the

2-D plane of the section. We have

where bIk = EpJ X 1

J "= -W VWda

In general, J will not be zero. However, for the class of w distributions that have

two axes of symmetry (such as elliptical distributions) J will vanish due to symmetry.

The confinement term is intended to be used where thin vortical regions are convected
over relatively long distances and where the velocity (except for that due to the vortex)

is slowly varying on the scale of the vortex diameter. In that case, we would expect the

viscous terms (either due to the basic numerical convection process or added explicitly)3 to symmetrize the w distribution since any strong, concentrated vortex will be spinning

rapidly. As a result, we would expect J and hence 61k to be small. Further, in the context
of the above use of the method, where the "external" velocity field is smoothly varying,

we should be able to make local corrections to the basic form for k to reduce any non-zero

values of 6 rk that occur due to lack of symmetry. These small corrections could depend
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on elements of the stress tensor. Other modifications and extensions of the method will
be discussed in Section 5.

We will see in the next sub-section that the basic solutions to our modified flow

equations are axisymmetric blobs with vorticity that decreases exponentially with radius
from the center (in 2-D). Since vorticity is conserved, 3-D vortex "filaments" will have
the same structure in each 2-D cross-section. A very important feature of the confinement
method, of course, concerns the interaction of these vortices with solid surfaces and with
each other. Additional important features concern the roll-up of thin vortex sheets.

Considering first the interaction with solid surfaces, the simplest case involves a viscous
flow calculation where the boundary layer is to be resolved in the immediate vicinity of the
surface. Then, a fine, high-resolution computational grid will be used in that region. Going
back to the basic idea of the method - that it be used only in regions where numerical
diffusion would be a problem (i.e., coarse grid regions), it can be seen f'- f the correction
should not be used in this high-resolution area and that it be made 4ero. This can be
accomplished by making the coupling constant, e, depend on grid size so that it vanishes
in high resolution areas where it is not needed. This dependence on grid size would also be
required to ensure that the confinement correction does not lead to errors in the viscous
boundary-layer calculation itself. Other cases, involving the interaction of vortices with
surfaces where the grid is not fine and where only inviscid computations are done, have
been carried out and show the expected diffusion-free convection. Numerical studies of
convection of a concentrated vortex past a cylinder in 2-D are shown in Section 4.1.

The vortex interaction feature can be studied by considering the interaction of vortex
pairs. For example, in the high Reynolds number limit, co-rotating vortices that are far
apart should stay apart for a relatively long time and ones that are close should quickly
merge [9]. The vortices should approximate inviscid flow, except when they finally merge.
when there should be a viscous-like behavior. This final merging property is analogous to
a Kutta condition for "inviscid" flow separation and an entropy condition in compressible
Euler solutions [10]. This feature is necessary for a realistic vortex computation method.
Numerical results for two co-rotating vortices are presented in Section 4.2.

The roll-up of a thin vortex sheet with elliptical circulation distribution is a standard
test case for vortex dynamics methods. Numerical results of this flow are presented in
Section 4.3. An important feature here is the lack of sensitivity of the final main vortex
position to the confinement parameter, e, and that the results reproduce well the salient
features of some similar experimentally measured flows.

2.3. Closed-Form Solution: Axisvmmetric Vortex. For an isolated axisymmetric vor-
tex in 2-D uniform flow, we have;

= -jw(rt)j

and
n = Vi7/jVi 7j = r/r

-6-



U where r is defined with respect to the c2nter of the vortex. We define

3 q = 2aoT(r, t) + q,.

where i0 is a unit vector in the azimuthal direction and q,, is a u.niform velocity. Substi-
tuting this into the confinement scheme, with simulated numerical diffusion we have, in a
frame convecting with qo,3 8~q = [•V 2q _- x w.

If c = 0, the solution is

* T=To. ( _ e--)

r

This, of course, results in a continually spreading vortical region with radius -, v 2  and
no non-trivial steady solution.

When c > 0, we can write an equation for the steady solution with atq = 0:3 The solution which is finite at r --* 0 is:

T(r) =2 [ 1-_ (1 + r)

I where

is the length scale.
This continuum solution should be a good approximation to the actual solution of the3 discretized equations with numerical diffusion and the capturing correction, for r > a. For
r < a, discretization effects will be important since the vortex will be spread over several
grid cells.

Other closed-form solutions for confined vortex sheets and some simple numerical tests
of the confining method for vortex blobs are presented in Refs. (5], [6], and (7].

3. NUMERICAL IMPLEMENTATION.

3.1. Basic Flow Solver. We use an efficient scheme that is, basically, a primitive vari-
able fixed-grid Euler equation solution method: This involves numerically convecting the
velocity components and computing a pressure term to enforce mass conservation. The3 capturing method is then used to compute a correction that, effectively, eliminates the
numerical diffusion in the convection. In addition to being very efficient, our method can
provide a smooth transition to an unperturbed, conventional primitive variable Navier-
Stokes scheme where the grid is fine enough and any turbulence models reliable enough to
accurately resolve the flow.

3 3.1.1. First, "convected" velocities are computed on the Eulerian grid.

qnl=Cqn

7-
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I In the continuum limit (for small At), this can be written

I q n - -t(q,-V),n

Any accurate numerical convection routine could be used here. In the results presented
in the next section, we use a second order accurate method with second order numerical
viscosity.

I 3.1.2. Then, a velocity correction, Sqv, is made on the grid such that, at each node,
vorticity is confined:

q2 1 = q+l + 6qb,+

The computation of this convection will be described below in 3.2.

3.1.3. Enforcement of Mass Conservation. A potential is solved for on the Eule-
rian grid such that the sum of the gradient of the potential and the convected velocity
with correction enforces mass conservation and normal flow conditions on solid surfaces.3 Our use of convected velocities together with a potential is similar to the split-velocity
Euler/Navier-Stokes solver of Ref. [11]. We have

Iqn+1 =n•+1 + von+1
q = q2n-- --

The potential, ,n+l, satisfies the Poisson equation

v2o"+l = -v- n+1

and normal flow conditions on solid surfaces:

9 0n€+1 = _qn+i

The potential has the effect of a pressure term computed to satisfy mass balance.

I In the continuum limit, the above steps also satisfy the inviscid momentum balance relation
(without the confinement term):

9,q = -(q. V)q + V(P/p)

I Any Poisson solver can be used for this step. For application to 3-D helicopter flow,
"a Jameson-type generalized-coordinate, conservative finite volume method was used on
"a blade-conforming grid and an efficient implicit Approximate Factorization method was

used to converge to a potential solution [12]. The results presented in Section 4.1 use a
multigrid solver and in 4.2 and 4.3, an FFT-based and ADI solver.
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3.1.4. Corrector Step. Velocities computed in the above steps are used as "predictor"
values and these steps are repeated in a "corrector" mode.

The above steps are repeated for each time step.

3.2. Confinement Term. The confinement term is added explicitly at each time step.
We use a formulation that has a bias towards smaller values of ri(-IVwI). The correction
then transports vorticity towards regions of small rq, while conserving total vorticity. This
has proven to be a robust scheame. If we consider a grid cell with velocity defined at the

nodes, then the box-type central differencing that we use to compute the curl results in
an w defined at the cell center. We then compute average values of 77 at the nodes, and
compute (at the cell center) a unit vector pointing away from the centroid of the vortex:

-~ V77mn =IV7

The correction to be added to the velocity is then simply

45q 2 = -EAtajil x w

where c is a relaxation factor (which can depend on grid cell dimensions) and al are weights

computed at cell nodes (labeled 1) to enforce the biasing. We have had good success with

the simple form:
a,= rmin (0, qit- < 77 >)
al = a

,a

where < 77 > is the averaged value of 77, over the cell nodes.

* 4. NUMERICAL RESULTS.

The basic numerical solution method is second order accurate and incompressible.

It is similar to that of Ref. [11]. The method is explained also in Refs. [5], [61, and [7],

where an application of the confinement method in 3-D in generalized coordinates is also

described for Helicopter Rotor Flow. Applications of the method to convection of a vortex

in 2-D uniform flow are also described in Ref. [7]. In this section results will be presented

for several 2-D flows.

3 4.1. Vortex-Surface Interaction. Results of a vortex convecting closely past a cylinder

in a flow that is uniform in the far field are presented. In Fig. 1 contour plots of vorticity

are presented for a sequence of times. The contours have the same value in each plot,

extending from about 30% maximum value, and show that the vortex does not diffuse.

For this run, a value of 0.02 was used for c. Plots corresponding to the first two times are

shown in Fig. 2 with c = 0 (no confinement). The large effects of the numerical diffusion

inherent in the basic numerical method are obvious. The grid used in both computations

is shown in Fig. 3.
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1 4.2. Co-Rotating Vortices. Two vortex "blobs" are treated, each spread over several
grid cells. Neumann conditions are imposed on the boundaries of a 64 x 64 Cartesian grid.3 Three solutions are presented: one with no confinement and two with confinement with 6
= 0.05. We define a "core diameter". of a vortex by the diameter of its vorticity contour
corresponding to about 30% of the maximum value, or about 5 grid cells for the confined

vortices. The first two solutions involve an initial separation of 4 core diameters: one
without the confinement term and one with. Contours of the initial vorticity distribution
are presented in Fig. 4. After 40 time steps of the computation, the contours are plotted
in Fig. 5 for the case with no confinement correction. This total time corresponds to a
rotation of the two vortices of about .45 radians. It can be seen that numerical diffusion3 results in extensive spreading of the vortices, since the maximum value of vorticity has
decreased by a factor of about 22. The CFL number is about 4. After 80 time steps, or a
rotation of about .9 radians, the vorticity contours, as seen in Fig. 6, are spread widely and

the maximum vorticity reduced by a total factor of about 33. Results, with the confining
correction turned on, at 80 and 320 time steps or .9 and 3.6 radians, are presented in
Figs. 7 and 8 respectively.After afew initial time steps,each vortexreaches a stable state
with maximum vorticity about .38 of the initial value. This does not reflect a loss of total
vorticity but just a redistribution. A third case is presented with the same conditions, but

an initial separation of only 2 core diameters. It can be seen that after a rotation of about
1.8 radians the vortices are fully merged, as shown in Fig. 9. This is to be expected for3 actual vortex blobs [9].

An interesting feature concerns the lower levels of vorticity. Contours starting at 3%
maximum in intervals of 3% maximum are presented in Fig. 10 for a case with an initial
separation of 3 core diameters, on a 128 x 128 grid. After 1.8 radians rotation, the two
vortices show spiral arms similar to those seen in inviscid high-resolution pseudospectral

computations of elongated vortices [13]. Although constant-vorticity, co-rotating vortex
blobs are expected to have stable solutions if they are far enough apart, the vortices treated
here have a smoothly decreasing distribution and should tend to merge with shedding of

spiral arms, as in the vortices treated in Ref. [131. The effects of our confinement term

as well as the diffusion are along the gradient of the vorticity magnitude and do not seem

to interfere with the shedding of these arms, which are caused by a varying velocity field
mainly normal to this gradient. It can be seen that a weak Raleigh-Taylor-like instability
causes the arms to break up into small, regular strings of vortex blobs. This could probably
be eliminated by a change in the confinement term, so that continuous arms are shed, but it
apparently would not have much effect on the overall solution. A simulation starting from
almost the same initial vorticity distribution was performed with a vortex-in-cell method
with several thousand point vortices on a 128 x 128 grid [14]. The results are plotted in
Fig. 11 after a time similar to that for the above run. The outer-most point vortices of

Fig. 11 correspond to the outer-most contours of Fig. 10 and the results are quite similar.
This agreement was not expected, since the main objective of the confinement method was
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I to only prevent the main vorticity from diffusi,.g and not to accurately treat detailed, low

level features of the internal structure.

4.3. Vortex Sheet Roll-Up. This case involves an initially flat vortex sheet in 2-D with

an elliptical circulation distribution:

I r(s) = rt(1- S2)

in a square domain, where the left wall corresponds to S = 0 and the end of the sheet, at

S = 1, is initially in the center of the domain. In the computation, Neumann conditions
are imposed on the four sides of the domain. Initially, the sheet is slightly spread in the
vertical direction on the (128 x 128) grid, as shown by the vorticity contours in Fig. 12.

The same contours are presented in Fig. 13 for a solution after 280 steps. A value of

.0005 was used for - (the normalization of e is different for the Roll-up case than the cases
presented above). A region of concentrated vorticity can be seen to develop. Contours
for the same time but with no confinement, shown in Fig. 14, show a considerably more

spread vortex.
A final case concerned variations of the solution with the one parameter in the method:

In order for our method to be useful the position of the vortex should not depend on E,
I only its core size. This is similar to shock capturing methods where it is important that the

shock position not depend on the parameter multiplying the artificial viscosity, but only
the shock thickness. The same case presented in Fig. 13 after 280 time steps is presented

in Fig. 15, but with a value of - four times as large (.002). It can be seen that the vortex

is much more concentrated but that it is in the same position, to plotable accuracy.

A delta-wing sheds a vortex sheet from the leading edge that is similar in some respects
to this rolling-up sheet. Experimentally measured vorticity contours [15] are shown in

Fig. 16 (reproduced from that paper) for a sharp-edged delta wing in a cross-stream plane

I at .3 chord. Also shown in this figure are the Navier-Stokes 3-D finite-difference solutions

by the authors of Ref. [15], using a conventional method but, (in one case), with an

embedded fine-grid. The resolution near the vortex was finer in their calculations than

those presented here (in the cross-streaxm plane). It is interesting that the computed
contours are very similar to our case without confinement, and that the experimental3 contours are very similar to our case with confinement. Of course the delta-wing is very

different from the simple 2-D roll-up treated here, but the salient features of the rolling-up

I vortex are similar.

5. CONCLUSION.

I A method has been presented for computing flows with thin, concentrated vortical
regions, which should be important for many high Reynolds number aerodynamic flows.3 Discretized mass and momentum conservation equations are solved on a fixed Eulerian grid,

as in conventional Euler/Navier-Stokes methods. However, a "Vorticity Confinement"
correction is applied to the momentum conservation equations in the vortical regions.
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I The effect of the Vorticity Confinement term is to confine concentrated vorticity to
thin regions extending over a small number of grid cells as they convect through the flow.
The internal structure of these vortical regions attains a fixed, steady-state form with-
out spreading, even though the basic, discretized momentum equations involve numerical
diffusion.

Applications of the method to incompressible flows involving inviscid vortex-surface
interactions, co-rotating vortices and vortex sheet roll-up in 2-D were presented. These3 show the effectiveness of the method even when coarse computational grids are used. For
co-rotating vortices, at large scales, the vortices act like inviscid solut.ions. However, at
small scales, when the vortices finally merge, salient features of viscosity are automatically
simulated. Also, spiral arms, seen in much higher order, more detailed calculations are
computed. Finally, the vortex sheet solutions showed the lack of sensitivity of the final
vortex position to the confinement parameter, at least for that flow, and they showed that
the salient features of experimentally measured rolling-up vortex sheets should be resolved.

The method has already been applied to a realistic helicopter rotor flow in 3-D. How-3 ever, additional testing is required for more complex flows and for applications to com-
pressible transonic flows. For example, the use of general non-isentropic, compressible flow
solvers may require an additional entropy confinement term to avoid entropy diffusion away
from concentrated vortical regions. Also, additional testing is required for 3-D applica-
tions, including interactions of vortices with solid surfaces. Further, a characterization of

m the numerical errors should be given for different basic flow solvers with the confinement
term.

Interesting extensions include the simple possibilities of having vorticity-dependent
upper and lower cut-offs for the coupling constant, e. These should, respectively, accom-
modate "waterbag" constant-vorticity models and smoothly varying background vorticity
distributions. Further extensions could include extra terms to reduce any numerical errors
that are discovered in applications of the method, or to "encode" desired features of the
internal dynamics of the simulated vortices.
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Abstract two-bladed AH1-G rotor at low advance ratios in-
cluding blade motion. Computed results are com-

A new method has been developed for computing pared with experimental data. The sudden var-

advancing rotor flows. This method uses the Vor- ations in airloads due to blade-vortex interactions

ticity Embedding technique, which has been devel- on the advancing and retreating sides are well cap-

oped and validated over the last several years for the tured though the magnitudes of these changes are

hovering rotor problems. .n this work, the unsteady under-predicted. Computed wake geometries and

full potential equation is solved in an Eulerian grid their influence on the aerodynamic loads at these

with an embedded vortical velocity field. This vor- advance ratios are also discussed.

tical velocity accounts for the influence of the wake.I Dynamic grid changes that are required to accom-
modate prescribed blade motion and deformation List of Symbols
are included using a novel grid blending method.
Free wake computations have been performed on a C,, = normal force coefficient

M = local Mach number for blade section
Presented at the American Helicopter Society 49th Annual MT = hover tip Mach number
Forum, St. Louis, Missouri, May 19-21, 1993. Copyright
@1993 by the American Helicopter Society, Inc. All rights r = spanwise distance along the rotor blade
reserved. R = radial distance to rotor tip
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r = rotor bound circulation, first Clebsch the potential approximation). A separate model for

I variable the wake effects is required due to the fact that the
A = wake geometry parameter, second Cleb- conventional potential method constrains the wake

sch variable to lie on a grid plane.
qV = vortical velocity components

= rotor advance ratio Methods based on Euler or Navier-Stokes equa-

= rotor rotational speed tions, though not restricted by a Mach number lim-

x = Wake coordinates in computational its or wake location constraints, are computation-

space ally much more demanding, . Recently, Srinivasan

= rotor azimuthal angle, deg. et.al. developed a Navier-Stokes method to com-
Ct = section thrust pute the rotor/wake system [7] in hover. However,5 structured ENS methods rapidly dissipate vortical

structures, such as tip vortices, as a result of numer-

ical diffusion. Such numerical dissipation is min-
Introduction inmized by means of high-order schemes and dense

It has long been recognized that the ability to grids but the computational cost is considerable. In

comute hs or wken frm cognivedethctio teab is order to obviate this problem, Wake and Egolf [8]
compute rotor wake formation and convection is recently coupled a Navier-Stokes flow solver with a
prthe single most important element required for the lifting line free-wake code for the wake influence.
prediction of rotor performance, vibratory loads, These computations were performed on a massively

* and acoustics. Almost all forward-flight, free- Thel comput er.

wake prediction methods have been boundary- parallel computer.

integral methods. These are typified by the vortex- At present, there is only one CFD method that

lattice, lifting-line method used in the well-known can compute rotor/wake flows with no numerical

CAMRAD/JA [1] and the more recent curved- dissipation and with computationally reasonable

wake-element, lifting-surface methods developed by grid requirements. This is the method of Vorticity

Quackenbush et.al. [2]. These are incompressible, Embedding [9] - a combined Eulerian-Lagrangian

I inviscid methods, however, and the detailed predic- method. The absence of wake dissipation is due

tion of rotor loads (in response to the wake-induced to the fact that the shed circulation is not car-

inflow) requires auxiliary data or analyses. ried by the grid, but rather by a sheet of con-

In order to obviate much of the present need for vecting wake markers (a Lagrangian tracking pro-

airfoil tables, several hybrid schemes have been de- cess), whose circulation is impressed on the adja-

veloped , wherein an inner CFD potential code is cent grid points as a local vortical velocity distri-

coupled either to a comprehensive code (containing bution. These impressed vortical velocity distribu-

a vortex-lattice wake model) (3, 4, 5] or to a free- tions are used as a forcing function for a standard,

wake lifting line rotor analysis code [6]. Coupling Eulerian, full-potential flow solver. This approach,

is achieved by providing a partial inflow from the implemented in the HELIX-I code, has been suc-

comprehensive to the CFD code and in turn return- cessfully applied to the prediction of hover wakes

I ing the blade loads to the comprehensive code. The and performance (10].

partial inflow includes geometric, blade motion, and This paper describes the application of this tech-
wake inflow effects and is imposed through a tran- nique for the computation of low advance ratio fer-

spiration condition at the blade surface. For effi- ward flight wherein the wake effects are extremely
ciency, the CFD calculations are performed outside important. This method is efficient in convecting
the trim loop. The CFD solution for lift is speci- wakes without numerical diffusion and at the same

fled as a base solution inside the trim loop. These time can treat non-linear unsteady transonic flows
coupled methods combine an incompressible wake that occur near the tip. External coupling is needed
model with a 3-D, unsteady blade solution which only to account for blade motiou and deformation.
treats almost all but the strongest of transonic flows The main objective of this work is to demonstrate

(local Mach numbers less than about 1.3 - a result of that this new CFD based method can successfully

U
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model complex advancing rotor wakes and related

interactions. A description of the various modules
that are required to accomplish this, is provided. WaeBlade Cyclic pitchi
The computations shown here represent the first Vorticity Embeddilg dynamics Flapping
efforts to compute forward flight rotor/wake flows t
using Vorticiry Embedding. They demonstrate the Lagrangla,, wakej brid modification I-<-
feasibility of a unified rotor-wake CFD .o-nputa- T
tion. k , rnd Qv LGrid velocity

Tiuleiinii grid' "P lade

Solution Procedure eformation

Since the development of the original Vortex Em- V = V+ +QvVlid +It

bedding method, a number of modifications and
enhancements have been made to accommodate Flow solver
forward flight computations. These modifications C(
have been implemented into a new code HELIX- Sub-iteration
II. Some important features of HELIX-II are: i) "_U_

the Unsteady Full Potential Equation is solved and (LI-IS) A 4ý* = RIIS

computations are perfurmed along the entire az- "O A "J, g
imuth (360'). ii) Newton-type sub-iterations are N = N + I YES

performed for better convergence and time accu-
racy. iii) An improved wake convection procedure Figure 1: Schematic of the HELIX-II Solution
computes the Clebsch variables used in the algo- Proceduro
rithm more efficiently by using computational co-
ordinates. iv) Prescribed blade motions and elas- convection procedure for a new time step involves
tic deformation are included by modifying tne grid the following steps: i) The inertial coordinates of
near the rotor using a simple blending function the blade fixed grid corresponding to the new time
method [11]. step are obtained. ii) A set of new marker nodes

A schematic of the HELIX-II solution procedure is added at the updated blade trailing edge loca-
is shown in Figure 1. It can be see.- that each time tion. iii) All wake nodes are displaced to follow the
step of the free-wake calculation comprises thrr - local flow. This is accomplished using a search al-
major modular computations: i) The Lagrangian gorithm which determines the Eulerian grid cells in
wake convection and vortical velocity calculation, which the nodes are located. The three components
ii) incorporating necessary blade motion by mod- of velocity that are available at the grid nodes are
ifying the grid and ill) solution of the unsteady then interpolated to the marker nodes using trilin-
mass conservation equation in generalized coordi- ear interpolation. Then the wake nodes are moved
nates. In this section, each module is described, using:

X19A -":X-, + Vi.,,At (1)
Vorticity Embedding Since the azimuthal wake node interval and the time

The wake is represented by a set of nodes dis- step chosen for the computation are the same, it is
tributed along the azimuth at constant intervals and possible to associate the node I at the current time
along the rotor span (Figure 2) . An undistorted to the node 1 - 1 at previous time step. In ad-
wake is generally used to begin the solution process. dition, the cell identifying procedure provides the
The azimuthal node intervals are determined from marker computational coordinates. They are used
the time step used for the calculation and radial for vortical velocity computation. These integrated
nodes are situated at grid cell centers. The wake marker nodes define the new wake for the present
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Figure 2: The Lagrangian wake coordinate system represented by a network of nodes in
azimuthal and radial directions

the present time step. The wake geometry and the follows: Let Z,z, be the computed computational

blade loading determine the convergence of the so- coordinate of the wake node (1, Iv). Here I is theI lution for that particular time step. In this mod- azimuthal index and 1v is the radial index. Define,
ule, the search algorithm requires the maximum
amount of computing time. The present algorithm N1 = ý+j,, - Xii,, (2)

is very fast and general. An exhaustive search is

performed only once in the beginning and subse- If Nd is greater than 1 , Ths sub-nodes are to beuseinfrmaionfro ealie copu- added between nodes 1 and l + 1. These sub-nodes
quent searches usewill have the azimuthal grid indices as their X-
tations. A uniform azimuthal node distribution is coordhate the other t cdines a r o-

need d f r wke itegati n. hen lage ime coordinate and the other two coordinates are ob-Ineeded for wake integration. When a large time tmduigwihe neplto.Ta s
step (such as 4 degrees) is chosen this may result

* in poor wake resolution in regions near the blade X-+ij1 = itjl.Fj/F3 -;ZjjF2/F3 (3)
where the grid is fine. Without enough nodes, the

resulting vortical velocity computation will be inac- whereF 1 , F 2 and F3 are suitable weighting func-

curate. This is due to the fact that, the vorticity tions. r1,., the wake node circulation is also inter-
spreading distance is chosen based on the computa- polated in a similar manner to the sub-nodes. This
tional cells and at least one wake node is required new sub-divided wake with at least one sub-node

on every cell in the azimuthal direction. In order in each azimuthal cell is used for vortical velocity

to prevent this, a sub-nodal interpolation scheme is calculations.
used which sub-divides the computed wake between Once the wake is obtained for any given time step,E nodes. The wake, with these added sub-nodes mim- it is embedded into the Eulerian grid as a vortical

ics the local time stepping approach of the hover velocity. That is, the circulation of the convecting

code, HELIX-I and is used only for vortical veloc- Lagrangian wake nodes are impressed on the adja-

ity computation. The sub-division is performed as cent grid points as a local vortical velocity distri-

bution. This procedure is described in Ref. [9] and

I
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can be briefly stated as: i.) Compute Lagrangian As is the distance of a wake node from the grid

I wake. ii.) From each Eulerian grid point compute point and S,, is the signed normal distance of a grid
the distance of a wake panel. If this distance is node from a wake panel. These functions are in

larger than a specified smearing distance that grid computational space. Finally, T. is computed using
node will not get any contribution from that panel. Equation (4) Here, the gradient is computed using
Otherwise, a shape parameter A,,j,k and a strength the same box scheme as used for the potential cal-
parameter ri,, are determined at these grid points. culation.
iii.) Using these variables compute q as:

4: = r•,,,kvA 1 ,,, (4) Full Potential Formulation

This vortical velocity field which is normal to the is obtained the conservation
sheet is solenoidal and accounts for the wake vor-
ticity. In forward flight, the wake is time dependent
and there is no single wake geometry. One periodic + V"(pV)0 (8)
solution may require several azimuthal revolutions

of computations and each revolution in turn has as is solved in the Eulerian grid. Here V is given by,
many wake geometries as the number of time steps.
For this reason an efficient procedure is required. A V = VO+4, + V+ (9)
new scheme has been developed which is very fast.
In this: i.) The wake convection and the computa- where Vb is the velocity due to blade motion. Equa-
tion of Clebsch constants are done simultaneously. tion (8) is solved using the scheme described in
That is, in order to convect the wake, the grid veloc- Ref. [9]. The salient features of this solver are:
ities will have to be interpolated to the wake nodes. i.) Equation (8) is discretized using finite-volume
This requires the identification of Lagrangian nodes method. ii.) At each time step, Newton-type sub-
in the computational space. They are the integer iterations are performed for rapid convergence and
component of itj,. ii.) Now a vorticity spreading time accuracy. iii.) At each time step, local time-
distance D is defined in the computational space linearization is performed to provide a good initial
which specifies the number of cells over which q guess for the Newton iterations. iv.) Circulation
will be spread. The circulation of a given node, convection is solved in the wake before it is com-
(1, Iv) is impressed over a region given by, pletely replaced by the Lagrangian wake.

R , t = int D (5) Only a brief description of the time-linearization

n vis provided in this section. A more detailed de-
using Clebsch variables r and A. Since these two scription can be found in Ref. (121. Eqn. (8) can be

variables are scalars they are invariant and can be represented as

I transported to the rotor grid to obtain 4,. iii.) A (10)
grid node can get a contribution from more than one
Lagrangian wake node. Hence these contributions where 0 is the unknown to be solved for at every

I are added. r and A are computed using interpola- grid point at the n + 1 time level, and n is the tem-
tion like formulae : poral index. The Newton iteration for the solution

E, - , to the above equation is,
,wi,j.o

= E (6) F(0') +

A1,si = n- where 6' is the currently available value of b at the

where Wj,,k is a weighting function given by, n + 1 time level. At convergence,

DAs2

I
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will approach zero. Equation (8) can be discretized Similarly, the flapping motion is defined by,

as

Pn+1P n -ý (ph) 0= Po~ + )31 cos (TI) + )3 1, sin (TI) (18)

A a (n+) The flapping deflection for a given radial station, r,I ~ ~~+ -2- (phV) + -1 (phW) ,+__0 isivnb

a(13) isvp = ," (19)
Using expansions similar to that of Equation (11)Ifor p+l~ and other flux terms we obtain, Using this equation the rotor blade deflection at

every span station is computed. It is then used to

' + 22 =•. AO" + [f + AO-] translate the blade in the normal direction and a
aoý 4similar blending procedure confines the changes toI+ [g+ -a'A0.]ao 7 +regions near the blade. This process is illustrated

+ + = 0 in Figure 3. Finally, using the new and old coordi-
(14) nates, the velocity due to blade motion is computed

In this equation f, g and p are the flux terms and h as,

is the transformation matrix. This equation can be =fb = Xt+t - Xt (20)

rearranged with Ao" terms on the left hand side

and terms involving " and " levels on the right Results and Discussions
hand side. The LHS is factored using approximate-

factorization [9]. After the rearrangement and fac- Forward flight computations have been per-
torization the discretized equation looks like formed on the two-bladed AH1-G rotor at low ad-

LCLLL(AO" = RHS (15) vance ratios. This rotor, which has a relatively

simple geometry, has been chosen for our first val-

We solve for A0" and at the end of the sub- idation effort. The open literature contains an ex-

iterations, 0' = on+,. In our scheme the spanwise haustive set of flight test data for a wide range of

marching is performed explicitly. Finally, the cir- advance ratios. A rotor-fixed H-H mesh was gen-

culation convection equation is solved in the wake. erated using a two-step algebraic scheme. First, a

At the end of the sub-iteration process, the solver planar H-H mesh is generated at each radial station

provides the total velocity field for wake convection with specified outer boundaries. The axial bound-

and aerodynamic loads for aeroelastic computation aries are chosen to be approximately at 1 radius.

(if a structural module is included). Then, the planar grids are transformed to a series of

cylindrical grids with constant radii. Once the grid

Blade Motion is generated on a single blade it is rotated by an

appropriate angle to obtain the grids for the other
In this section the mechanism to include the pre- blades. The AH1-G rotor uses a symmetric airfoil
scribed blade motion, such as cyclic pitch and flap- and has an aspect ratio of 9.8. Two different grids

I ping, are described. In addition, the same approach with 350,000 and 425,000 points have been used for
can be used to account for aeroelastic deformation. our investigation. Typically, about 200 points are

If eo, 01, and 0 1, are the cyclic pitch motion har- distributed along the azimuth, 50 in the normal di-E monics, for each time step each blade sectional grid rection, and 40 in the radial direction. A portion of

is rotated by Ob, where the grid is shown in Figure 4. The twist and collec-
S = 0 0 + 01, cos (%Ps) + 0, sin (T) (16) tive pitch angle are built into the grid by rotating

b cthe section at each radial station. Two different

The original grid and the rotated grids are then flight conditions have been chosen corresponding to

combined using blending functions. That is advance ratios of 0.19 and 0.15. The lateral and

longitudinal cyclic pitch variations have been ob-

Xr,, = IgofA + Xu,,,,ot, (I - f)" (17) tained from Ref. [13]. Also, the zeroeth (coning)

I
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Figure 3: Blending method for including dynamic grid changes

and first blade flapping harmonics are input from along the rotor span. In the present calculation, for
this report for a particular trim condition. The tip every set of nodes added a set of far wake nodes
Mach number is 0.65. is dropped thus maintaining the total number of

The initial undistorted wake is obtained using a azimuthal nodes a constant. Thus the free wake

uniform axial flow. The undistorted wake has 21 computation is performed over 400 degree azimuth

nodes distributed along the spanwise direction and and the influence of the far wake included using the

100 azimuthal nodes. The radial circulation dis- wake nodes from earlier revolutions. In Figure 5 the

tribution is input from an earlier hover calculation computed wake geometry is plotted at two different

and is constant along the azimuth. The starting azimuths corresponding to 90 and 180 degrees. This

wake is very approximate. It is possible to start the is obtained after 6 rotor revolutions and is fully con-

solution process with a more accurate wake from verged. The rolled-up tip vortex regions can clearly

an earlier computation. However, in the absence be seen. The wake rolls up quickly and convects

of such information the present starting procedure fairly close to the blade. At these two azimuthal lo-

is used. This results in a longer computing time - cations, their proximity causes a particularly strong

requiring about 6 - 8 revolutions before a periodic interaction.

solution is obtained. Each wake node is displaced Contours of constant circulation in the wake, af-
I using the interpolated velocities obtained from the ter 7 revolutions of the blade, are shown in Figure 6.

flow solver. At every time step new nodes are added It can be seen here that after about 5 revolutions
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a periodic state is reached. Also, the progressive of user specified grid cells. Using a large smearing
development of the blade vortex interaction region distance is analogous to having a fat core in con-
over the blade on the retreating side is clearly il- ventional lifting-line models. This large smearing
lustrated. These interactions begin outboard at the affects the accuracy of the solution especially on
second revolution and spreads over entire the blade. the advancing side. Generally, a certain minimum

In Figure 7 the azimuthal variation of lift is plot- amount of wake spreading is required for stability.
ted along the span. The two distinct regions of In order to improve the accuracy the solution can be

blade vortex interactions can be seen in this figure. recomputed using a smaller spreading distance us-

On the advancing side, it happens at about 75 de- ing a converged wake geometry. The wake will not
grees near the tip (outboard) and shifts gradually to be recomputed but the core will be redefined. In
about 110 degrees traveling inboard along the span. this manner, a new core, almost an order of mag-

On the retreating side, similar interactions occur nitude smaller, can be obtained without affecting
starting at about 275 degrees inboard and slowly the stability. In addition, the coarseness of the grid
moving to about 300 degree and approaching the would cause excessive smearing. In order to pre-
tip. For this case the periodic solution has been vent this, using the existing wake, the solution can
obtained after about 6 rotor revolutions of compu- be recomputed over a short interval using a finer

I tations. With a better starting solution this can be grid. This interval would cover the region of BVI
reduced to about 3 revolutions, both on the advancing and retreating sides. With

In Figure 8 the computed normal load varia- a better definition of the wake region interactions
tion Fgr 8 th omted nor mal l oad would become stronger. The use of a very fine grid
tion (CN ) is plotted for different radial stations for the entire azimuth will be computationally ex-
as a function of the azimuth. These computations pensive but if it is used only over a short range it
have been performed at an advance ratio of 0.15. should be acceptable.
The strong blade vortex interactions can be seenon te avaning ideat he zimuh o 90de- The choice of time step is another factor deter-
grees and on the retreating side at about 270 de- mining the accuracy. For the computations shown,grees. the reteatins at coup7r e - a time step of 4 degrees is chosen for free-wake cal-grees. The computed solutions are compared with culation. Again, a smaller time step can be used

over a short range and the accuracy can be im-sive code [1]. Blade elastic deformation was not in- These
cluded and thus conditions were identical to those pre Teepos s will be epe andrfu-
used for HELIX-If runs. For HELIX-If computa- ture computations wi include these features.

I tions, the blade cyclic and flapping harmonics have
been obtained from the comprehensive code. A uni- Conclusion
formly good comparison is seen, especially in the
inboard regions. Maximum deviations are observed The method of Vorticity Embedding has been
at the 90 degree position on the advancing side. On used to construct the first self-contained CFD
the retreating side, the magnitude of the wake in- model of a rotor in forward flight. The method (em-
teractions are somewhat under predicted. bodied in the code, HELIX-Il) predicts the three

In Figure 9 the HELIX-If computed solutions at dimensional, compressible (transonic) flow about a
an advance ratio of 0.19 have been compared to rotor, which both generates and interacts with it'sI the flight test data obtained from Ref. [13]. The wake system. Although the entire multi-rotor and
blade-motion coefficients used for this case has been wake system is discretized, the use of a dissipation-
obtained from the flight test data. Good corn- less method permits the use of a smaller grid than
parisons can be seen inboard. The magnitude of can be achieved by any structured grid method.
the blade vortex interactions have been somewhat The use of a relatively small grid, combined with
under-predicted near the tip. This is probably due a potential based method, makes the scheme highly
to two reasons. First, the excessive spreading of the efficient. It has been found the wake solution
vorticity, which is performed over certain number achieves periodicity (beginning with an undisturbed
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starting condition) in about 6 rotor revolutions. Annual Forum of the American Helicopter So-
The method has been used to predict the low ad- ciety, St. Louis, MO, May 18-20, 1987.
vance ratio flow on the AH1-G rotor. Comparisons [5] Torok, M. S., and Berezin, C. R., " Aerody-
with flight loads data and CAMIRAD/JA computa- naTmic and Wake Methodology Evaluation Us-
tions are highly promising and show that CFD can ng Mode MExperimentaluata," Us-
indeed be used for the treatment of these highly ing Model UH60-A Experimental Data," pre-
complex flows. Although the present rotor-wake sented at the AHS 48th Annual Forum, Wash-
computation is probably the most complex appli- ington D.C., June 3-5, 1992.

cation of Vorticity Embedding to date, the method [6] Michea, B., Desopper, A. and Costes,
is intrinsically flexible and amenable to many uses. M.,"Aerodynamic Rotor Loads Prediction
Vorticity Embedding therefore promises to make a Methods with Free Wake for Low Advance Ra-
signigicant contribution both to our understanding tio Descent Flights," presented at the 13th Eu-
of vibratory loads, performance, and acoustics and ropean Rotorcraft Forum, Arles, FRance, Sept

I also to the flow predictive methods required by ro- 11-13 1992.
torcraft community.

[7] Srinivasan, G. R., Raghavan, V., and Duque,
E.P.N., "Flowfield Analysis of Modem He-
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I Figure 6: Contours of constant circulation in the wake for 7 rotor revolutions, u = 0.19
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